Détails Publication
Renormalized solutions for a p(⋅)-Laplacian equation with Neumann nonhomogeneous boundary condition involving diffuse measure data and variable exponent,
Discipline: Mathématiques
Auteur(s): M.B. Benboubker, E. Nassouri, S. Ouaro, U. Traoré
Auteur(s) tagués:
OUARO Stanislas ;
TRAORE Urbain
Renseignée par : OUARO Stanislas
Résumé
In this paper we prove the existence of at least one renormalized solution for the p(x)-Laplacian equation associated with a maximal monotone operator and Radon measure data. The functional setting involves Sobolev spaces with variable exponent W1,p(⋅)(Ω)
Mots-clés
variable exponent; maximal monotone operator; Radon measure; renormalized solution; Neumann boundary conditions