Détails Publication
ON UNIQUENESS OF LOCAL ENTROPY SOLUTION OF A CONVECTION-DIFFUSION TYPE INTEGRO-DIFFERENTIAL EQUATION,
Lien de l'article: https://doi.org/10.56947/gjom.v19i2.2660
Discipline: Mathématiques
Auteur(s): MOHAMED BANCE and SAFIMBA SOMA
Auteur(s) tagués:
Renseignée par : SOMA Safimba
Résumé
We study the uniqueness of entropy solution for a class of triply
nonlinear parabolic integro-differential equations of the form
∂t k ∗(j(v)−j(v0)) −∇· a(x, ∇ϕ(v)) + F (ϕ(v)) = f
in a bounded domain with homogeneous Dirichlet boundary conditions. The
source term f belongs to L1 and the memory term k ∗(j(v)−j(v0)) introduces
a nonlocal dependence. The functions j(v) and ϕ(v), assumed to be non-
decreasing, further contribute to the nonlinear nature of the problem. To prove
uniqueness, we apply the method of doubling variables leading to an energy
estimate that ensures the desired result.
Mots-clés
Fractional time derivative; Nonlinear Volterra equation; triply non- linear; Entropy solution.