Détails Publication
Derivations and Dimentionally Nilpotent Derivations in Lie Algebras,
Discipline: Mathématiques
Auteur(s): Abdoulaye DEMBEGA , Amidou KONKOBO, MOUSSA OUATTARA
Auteur(s) tagués: KONKOBO Amidou ; OUATTARA Moussa
Renseignée par : KONKOBO Amidou
Résumé

In this paper, we first study derivations in non nilpotent Lie triple algebras. We determine the structure of derivation algebra according to whether it admits an idempotent or a pseudo-idempotent. We study the multiplicative structure of non nil dimensionally nilpotent Lie triple algebras. We show that when n=2 p+1 the adapted basis coincides with the canonical basis of the gametic algebra G(2 p+2,2) or this one obviously associated to a pseudo-idempotent and if n=2 p then the algebra is either one of the precedent case or a conservative Bernstein algebra.

Mots-clés

Dimensionally nilpotent Lie triple algebra, pseudo-idempotent, Jordan algebra, ascending basis

935
Enseignants
5614
Publications
49
Laboratoires
84
Projets