Détails Publication
Primitive idempotents and constacyclic codes over finite chain rings,
Discipline: Mathématiques
Auteur(s): Mohammed Elhassani Charkani, Joël Kabore
Auteur(s) tagués: KABORE Joël
Renseignée par : KABORE Joël
Résumé

Let R be a commutative local nite ring. In this paper, we construct the complete set of pairwise orthogonal primitive idempotents of R[X]/ where g is a regular polynomial in R[X]. We use this set to decompose
the ring R[X]/ and to give the structure of constacyclic codes over
nite chain rings. This allows us to describe generators of the dual code C?
of a constacyclic code C and to characterize non-trivial self-dual constacyclic
codes over fi nite chain rings.

Mots-clés

finite chain ring, idempotent, constacyclic code

935
Enseignants
5615
Publications
49
Laboratoires
84
Projets