Détails Publication
Asymptotic convergence of the extremes of a geometric random variables sequence,
Lien de l'article: DOI: http://dx.doi.org/10.16929/as/2024.4119.339
Discipline: Statistiques et Probabilités
Auteur(s): Frédéric Béré, Caleb-Rodolphe Bazié and Vini Yves Bernadin Loyara
Auteur(s) tagués:
LOYARA Vini Yves Bernadin
Renseignée par : LOYARA Vini Yves Bernadin
Résumé
In this paper, we give some contributions to the analysis of the behavior of the extremes of a category of random variables (r.v.) of geometric type. First, we exhibit a subsequence making certain r.v. of integer part converge. Then we prove the convergence in law of extremes of a sequence of geometric type r.v. Finally, we prove the mean convergence of the extremes of a sequence of geometric type r.v.
Mots-clés
geometric random variable, asymptotic law of extremes, convergent subsequence, functional convergence.