Détails Publication
Renormalized solutions for a p(·)-Laplacian equation with Neumann nonhomogeneous boundary condition involving diffuse measure data and variable exponent,
Discipline: Mathématiques
Auteur(s): M. B. Benboubker E. Nassouri, S. Ouaro, U. Traoré
Auteur(s) tagués:
OUARO Stanislas
Renseignée par : TRAORÉ Urbain
Résumé
In this paper we prove the existence of at least one renormalized solution for the p(x)-Laplacian equation associated with a maximal monotone operator and Radon measure data. The functional setting involves Sobolev spaces with variable exponent W^{1,p(·)}(Ω).
Mots-clés
variable exponent, maximal monotone operator, Radon measure , renormalized solution, Neumann boundary conditions.